[]Trait nalgebra::SimdComplexField

pub trait SimdComplexField: 'static + Field<Output = Self> + SubsetOf<Self> + SupersetOf<f64> + PartialEq<Self> + Send + Copy + Sync + Neg + Any + Debug + NumOps<Self, Self> + NumAssignOps<Self> where
    <Self::SimdRealField as SimdValue>::SimdBool == Self::SimdBool, 
{ type SimdRealField: SimdRealField; fn from_simd_real(re: Self::SimdRealField) -> Self;
fn simd_real(self) -> Self::SimdRealField;
fn simd_imaginary(self) -> Self::SimdRealField;
fn simd_modulus(self) -> Self::SimdRealField;
fn simd_modulus_squared(self) -> Self::SimdRealField;
fn simd_argument(self) -> Self::SimdRealField;
fn simd_norm1(self) -> Self::SimdRealField;
fn simd_scale(self, factor: Self::SimdRealField) -> Self;
fn simd_unscale(self, factor: Self::SimdRealField) -> Self;
fn simd_floor(self) -> Self;
fn simd_ceil(self) -> Self;
fn simd_round(self) -> Self;
fn simd_trunc(self) -> Self;
fn simd_fract(self) -> Self;
fn simd_mul_add(self, a: Self, b: Self) -> Self;
fn simd_abs(self) -> Self::SimdRealField;
fn simd_hypot(self, other: Self) -> Self::SimdRealField;
fn simd_recip(self) -> Self;
fn simd_conjugate(self) -> Self;
fn simd_sin(self) -> Self;
fn simd_cos(self) -> Self;
fn simd_sin_cos(self) -> (Self, Self);
fn simd_tan(self) -> Self;
fn simd_asin(self) -> Self;
fn simd_acos(self) -> Self;
fn simd_atan(self) -> Self;
fn simd_sinh(self) -> Self;
fn simd_cosh(self) -> Self;
fn simd_tanh(self) -> Self;
fn simd_asinh(self) -> Self;
fn simd_acosh(self) -> Self;
fn simd_atanh(self) -> Self;
fn simd_log(self, base: Self::SimdRealField) -> Self;
fn simd_log2(self) -> Self;
fn simd_log10(self) -> Self;
fn simd_ln(self) -> Self;
fn simd_ln_1p(self) -> Self;
fn simd_sqrt(self) -> Self;
fn simd_exp(self) -> Self;
fn simd_exp2(self) -> Self;
fn simd_exp_m1(self) -> Self;
fn simd_powi(self, n: i32) -> Self;
fn simd_powf(self, n: Self::SimdRealField) -> Self;
fn simd_powc(self, n: Self) -> Self;
fn simd_cbrt(self) -> Self; fn simd_to_polar(self) -> (Self::SimdRealField, Self::SimdRealField) { ... }
fn simd_to_exp(self) -> (Self::SimdRealField, Self) { ... }
fn simd_signum(self) -> Self { ... }
fn simd_sinh_cosh(self) -> (Self, Self) { ... }
fn simd_sinc(self) -> Self { ... }
fn simd_sinhc(self) -> Self { ... }
fn simd_cosc(self) -> Self { ... }
fn simd_coshc(self) -> Self { ... } }

Lane-wise generalisation of ComplexField for SIMD complex fields.

Each lane of an SIMD complex field should contain one complex field.

Associated Types

type SimdRealField: SimdRealField

Type of the coefficients of a complex number.

Loading content...

Required methods

fn from_simd_real(re: Self::SimdRealField) -> Self

Builds a pure-real complex number from the given value.

fn simd_real(self) -> Self::SimdRealField

The real part of this complex number.

fn simd_imaginary(self) -> Self::SimdRealField

The imaginary part of this complex number.

fn simd_modulus(self) -> Self::SimdRealField

The modulus of this complex number.

fn simd_modulus_squared(self) -> Self::SimdRealField

The squared modulus of this complex number.

fn simd_argument(self) -> Self::SimdRealField

The argument of this complex number.

fn simd_norm1(self) -> Self::SimdRealField

The sum of the absolute value of this complex number's real and imaginary part.

fn simd_scale(self, factor: Self::SimdRealField) -> Self

Multiplies this complex number by factor.

fn simd_unscale(self, factor: Self::SimdRealField) -> Self

Divides this complex number by factor.

fn simd_floor(self) -> Self

fn simd_ceil(self) -> Self

fn simd_round(self) -> Self

fn simd_trunc(self) -> Self

fn simd_fract(self) -> Self

fn simd_mul_add(self, a: Self, b: Self) -> Self

fn simd_abs(self) -> Self::SimdRealField

The absolute value of this complex number: self / self.signum().

This is equivalent to self.modulus().

fn simd_hypot(self, other: Self) -> Self::SimdRealField

Computes (self.conjugate() * self + other.conjugate() * other).sqrt()

fn simd_recip(self) -> Self

fn simd_conjugate(self) -> Self

fn simd_sin(self) -> Self

fn simd_cos(self) -> Self

fn simd_sin_cos(self) -> (Self, Self)

fn simd_tan(self) -> Self

fn simd_asin(self) -> Self

fn simd_acos(self) -> Self

fn simd_atan(self) -> Self

fn simd_sinh(self) -> Self

fn simd_cosh(self) -> Self

fn simd_tanh(self) -> Self

fn simd_asinh(self) -> Self

fn simd_acosh(self) -> Self

fn simd_atanh(self) -> Self

fn simd_log(self, base: Self::SimdRealField) -> Self

fn simd_log2(self) -> Self

fn simd_log10(self) -> Self

fn simd_ln(self) -> Self

fn simd_ln_1p(self) -> Self

fn simd_sqrt(self) -> Self

fn simd_exp(self) -> Self

fn simd_exp2(self) -> Self

fn simd_exp_m1(self) -> Self

fn simd_powi(self, n: i32) -> Self

fn simd_powf(self, n: Self::SimdRealField) -> Self

fn simd_powc(self, n: Self) -> Self

fn simd_cbrt(self) -> Self

Loading content...

Provided methods

fn simd_to_polar(self) -> (Self::SimdRealField, Self::SimdRealField)

The polar form of this complex number: (modulus, arg)

fn simd_to_exp(self) -> (Self::SimdRealField, Self)

The exponential form of this complex number: (modulus, e^{i arg})

fn simd_signum(self) -> Self

The exponential part of this complex number: self / self.modulus()

fn simd_sinh_cosh(self) -> (Self, Self)

fn simd_sinc(self) -> Self

Cardinal sine

fn simd_sinhc(self) -> Self

fn simd_cosc(self) -> Self

Cardinal cos

fn simd_coshc(self) -> Self

Loading content...

Implementors

impl<T> SimdComplexField for T where
    T: ComplexField

type SimdRealField = <T as ComplexField>::RealField

Loading content...